TABLE 6-continued

Cb vs Ti									
Nominal (%): Fe-0.5% Cb-0.7% Mn-0.5% Si-0.3% Al-0.005% B									
	% Other Elements				Time to 1% Creep (Hours)				
Alloy	Ni	Cr	С	N	1400° F./13 ksi	1600° F./7 ksi	1800° F./2.5 ksi		
v	39.8	30.0	.07	.16	77	40	274		

TABLE 7							_ 10		
	COMPARATIVE PROPERTIES (Sheet)								
	Alloy I	Alloy V	800H	253MA	601	310	316	_	
Yield								•	
Strength									
(ksi)								15	
RT	41	49	35	51	42	32	38	13	
1,200° F.	26	27	22	24	38	17	21		
1,400° F.	24	28	20	22	39	15	18		
1,600° F.	20	25	13	16	16	12	11		
1,800° F.	11	10	8	_	9	6	6		
Tensile								20	
Elongation								20	
(%)									
RT	42	45	46	51	47	46	_		
1,200° F.	42	50	45	48	50	39			
1.400° F.	45	40	62	44	41	73	٠ ــــ		

TABLE 8

35

66

1,600° F.

1,800° F.

		1.4	ADLL 0				
.(_					
Exposur Temperati		Alloy I	Alloy V	800H	601	310	_
1,200° F.	UTS	98	116	88	127	86	_
	YS	41	57	38	76	37	
	EL	35	30	38	31	41	
1,400° F.	UTS	94	121	83	106	100	
	YS	39	62	34	51	41	
	EL	32	24	41	37	21	
1,600° F.	UTS	90	108	78	91	84	
	YS	35	48	30	38	35	
	EL	33	32	39	45	23	
As Annealed	UTS	99	108	82	95	. 81	
	YS	41	49	36	42	32	
	EL	42	45	46	47	46	

$$-\frac{Cb}{9} - \frac{V}{45} - \frac{Ta}{18}$$
.

Silicon may be added to the alloy but preferably it does not exceed 3% by weight. Up to 1% silicon has 15 excellent strength while 1% to 3% silicon has lower strength but better oxidation resistance. Titanium may also be added to improve creep resistance. However, not more than 0.20% titanium should be used. Manganese and aluminum may be added basically to enhance environment resistance, but should generally be limited to less than 2.0% and 1.0% respectively.

Boron, molybdenu, tungsten and cobalt may be added in moderate amounts to further enhance strength at elevated temperatures. Boron content of up to 0.02% will improve creep strength, but higher levels will impair weldability markedly. Molybdenum and tungsten will provide additional strength without significant thermal stability debit up to about 5%. Higher levels will produce some measurable loss in thermal stability, but can provide significant further strengthening up to a combined content of about 12%.

While we have decribed certain present preferred embodiments of our invention, it is to be distinctly understood that the invention is not limited thereto but may be variously embodied within the scope of the following claim.

We claim:

1. A metal alloy comprised of, in weight percent, about 30% to 45% nickel, about 12% to 32% chromium, at least one of 0.1% to 2.0% columbium, 0.2% to 4.0% tantalum and 0.05% to 1.0% vanadium, up to about 0.20% carbon, about 0.05% to 0.50% nitrogen, an effective addition of titanium up to 0.20% to provide beneficial strengthening effects at elevated tempera-

TABLE 9

65

86 54

69

	COMPARATIVE PROPERTIES (Sheet)						
	ALLOY I	ALLOY V	800H	253MA	601	310	316
Stress Rupture Life (Hour	s)						
1,400° F./13 ksi	949	551	104	110	205	10	95
1,660° F./7 ksi	196	194	88	40	98	5	21
Creep Life (Hours to 1%)	_						
1,400° F./13 ksi	92	77	3	18	46	1	_
1,600° F./7 ksi	25	40	8	10	29	1	

From the data discussed above, we have found that an alloy comprised of 25 to 45% nickel, about 12% to 32% chromium, at least one of 0.1% to 2.0% columbium, 0.2% to 4.0% tantalum and 0.05% to 1.0% vanadium, up to about 0.20% carbon, and about 0.05% to 60 0.50% nitrogen with the balance being iron plus impurities has good hot workability and fabricability characteristics provided $(C+N)_F$ is greater than 0.14% and less than 0.29%. previously As stated $(C+N)_F=C+N-Cb/9$. In versions of the alloy 65 wherein vanadium and tantalum are substituted separately or in combination for all or part of the columbium $(C+N)_F$ is defined by C+N

tures, and the balance being iron plus impurities and wherein $(C+N)_F$ is greater than 0.14% and less than 0.29% $(C+N)_F$ being defined as

$$(C + N)_F = C + N - \frac{Cb}{9} - \frac{V}{45} - \frac{Ta}{18}$$

2. The alloy of claim 1 further including at least one of up to 1% aluminum, up to 3% silicon, up to 2% magnagese, up to 5% cobalt, up to 5% total molybdenum and tungsten, up to 0.2% boron, up to 0.2% zironcium, and up to 0.1% total yttrium, lanthanum, cerium and other rare earth metals.